On Rees Algebras with a Gorenstein Veronese Subring
نویسندگان
چکیده
منابع مشابه
Rees Algebras of Modules
We study Rees algebras of modules within a fairly general framework. We introduce an approach through the notion of Bourbaki ideals that allow the use of deformation theory. One can talk about the (essentially unique) Bourbaki ideal I(E) of a module E which, in many situations, allows to reduce the nature of the Rees algebra of E to that of its Bourbaki ideal I(E). Properties such as Cohen–Maca...
متن کاملHilbert Functions of Veronese Algebras
We study the Hilbert polynomials of non-standard graded algebras R, that are finitely generated on generators not all of degree one. Given an expression P (R, t) = a(t)/(1 − t) for the Poincaré series of R as a rational function, we study for 0 ≤ i ≤ l the graded subspaces ⊕kRkl+i (which we denote R[l; i]) of R, in particular their Poincaré series and Hilbert functions. For example, we prove th...
متن کاملOn Cm-finite Gorenstein Artin Algebras
An artin algebra A is said to be CM-finite if there are only finitely many, up to isomorphisms, indecomposable finitely-generated Gorenstein-projective A-modules. We prove that for a Gorenstein artin algebra, it is CM-finite if and only if every its Gorenstein-projective module is a direct sum of finitely-generated Gorenstein-projective modules.
متن کاملCanonical modules of Rees algebras
We compute the canonical class of certain Rees algebras. Our formula generalizes that of Herzog and Vasconcelos. Its proof relies on the fact that the formation of the canonical module commutes with subintersections in important cases. As an application we treat the classical determinantal ideals and the corresponding algebras of minors. A considerable part of Wolmer Vasconcelos’ work has been ...
متن کاملRees Algebras of Diagonal Ideals
There is a natural epimorphism from the symmetric algebra to the Rees algebra of an ideal. When this epimorphism is an isomorphism, we say that the ideal is of linear type. Given two determinantal rings over a field, we consider the diagonal ideal, kernel of the multiplication map. We prove in many cases that the diagonal ideal is of linear type and recover the defining ideal of the Rees algebr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1998
ISSN: 0021-8693
DOI: 10.1006/jabr.1997.7207